Cross-modular processing in a spiking neural network model
نویسندگان
چکیده
منابع مشابه
Motion Detection Using Spiking Neural Network Model
Inspired by the behaviour of the human visual system, a spiking neural network is proposed to detect moving objects in a visual image sequence. The structure and the properties of the network are detailed in this paper. Simulation results show that the network is able to perform motion detection for dynamic visual image sequence. Boundaries of moving objects are extracted from an active neuron ...
متن کاملA regenerating spiking neural network
Due to their distributed architecture, artificial neural networks often show a graceful performance degradation to the loss of few units or connections. Living systems also display an additional source of fault-tolerance obtained through distributed processes of self-healing: defective components are actively regenerated. In this paper, we present results obtained with a model of development fo...
متن کاملSpiking Neural Network Architecture
ARM microprocessors are found in nearly every consumer device, from smartphones to gameboxes to e-readers and digital televisions. But did you know that, combined, these same ARM microprocessor cores can simulate the human brain? The Spiking Neural Network Architecture (SpiNNaker), a massively parallel neurocomputer architecture, aims to use more than one million ARM microprocessor cores to mod...
متن کاملStimulus sensitivity of a spiking neural network model
Some recent papers relate the criticality of complex systems to their maximal capacity of information processing. In the present paper, we consider high dimensional point processes, known as age-dependent Hawkes processes, which have been used to model spiking neural networks. Using mean-field approximation, the response of the network to a stimulus is computed and we provide a notion of stimul...
متن کاملClassifying Patterns in a Spiking Neural Network
Learning rules for spiking neural networks have emerged that can classify spatio-temporal spiking patterns as precise target spike trains, although there remains uncertainty in which rule to select that offers the greatest performance. Here, we quantify the performance of a stochastic neuron model in learning to classify input patterns by precise target responses as outputs, and compare its per...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Neuroscience
سال: 2011
ISSN: 1471-2202
DOI: 10.1186/1471-2202-12-s1-p270